A chicken’s view of why data loss matters.

http://www.flickr.com/photos/nickwheeleroz/247501402/sizes/o/in/photostream/
Examples of digital assets include:

- 250,000+ IA digitized books and archival materials (~70 million pages)
- 100+ newspaper titles (550,000 pages)
- 8,000+ prairie monos, 16,000+ images, 1000+ maps
- eTheses, OJS, preprint and other IR content
- ejournals (licensed)
- eResearch/eScholarship projects (e.g. Canadian Writing Research Collaboratory (CWRC); Editing Modernism in Canada (EMiC))
- Research data – e.g. Polar Year IPY-DACN; Data Library; census materials

“uplifting the whole people”
— HENRY MARSHALL TORY, FOUNDING PRESIDENT, 1908
500 year commitment to long term access.

What this means: 182,500 days of ensuring short term access.

Current preservation storage capacity: ~52 TB usable with ~18 TB currently in use – EOL’d

“Only storage vendors with a demonstrated record of 0% data loss since 1511 need apply.”

- P. Binkley, 2011

Preservation storage: scalability, predictability and sustainability

2012 = will add 300 TB
2014 = expecting to grow to 500 TB or more depending on projects and partnerships
Digital Preservation Program

Sustainable Funding

External partnerships and networks e.g. LOCKSS PLN; TDR network

Staffing: Expertise, Time, Attention

Technology: Preservation microservices, Fixity checking, Format validation, Audit Control Environment

Policies
Held multi-day planning workshop with CRL on TDR criteria and accreditation process

Program planning underway > goal is to learn from focused implementation and scale outwards

UAL Preservation Program includes TDR but also gold, silver, bronze(?) level preservation efforts

(Gold = must survive)
(Silver = most will survive)
(Bronze = we won’t go out of our way to destroy it)

Created new position: Digital Preservation Officer – policy creation, audit, documentation, adherence, and herding of cats.
• Preservation planning is always front and centre as we become involved in digital projects.

• **Use OAIS** reference model terminology to ensure our SIPs, AIPs and DIPs do what they need to do.

• **Apply preservation actions and microservices** where it makes sense to do so.

• **Multiple preservation strategies/streams** employed to reduce risk and the issue of single points of failure.

• **Preserve what matters** (preservables vs derivatives; can’t keep everything…)
Electronic journal content (incl. OJS and other materials) preserved via:

- LOCKSS
- COPPUL LOCKSS PLN
- CLOCKSS
- LOCKSS-USDOCS
- Portico
Example: International Polar Year – Data Archive Canadian Network

iRODS preservation backbone

- High speed CANARIE dedicated fiber between UAlberta and OCUL/UofT

Need addressed: Preservation replication service for grant funded Canadian polar research

- Governance and sustainability (economic and otherwise) – multiple nodes
- Messy data makes for messy work
 - Bit level preservation is achievable
 - Preserving meaning and usefulness is a whole other challenge…
- Gaining experience with eScience programs and future research data preservation projects
Diagram courtesy of Steve Marks, OCUL
Web Archiving

Using Archive-It subscription

Plans include:

- Developing further collections in areas related to W. Canada, Circumpolar, Gov Docs, current/significant events
- Discovery strategy – metadata; access points
- Locally preserve (and possibly host) data in 2012
 - LOCKSS plug-in for Archive-It
 - Local version of Heretrix

Example: Web Archiving
Current project:

1. Inventory collections

2. Determine research or other value - criteria

3. Determine storage/access media migration strategy:
 - Avoid moving from obsolete to soon-to-be obsolete

• Considerations:
 - bit level preservation and emulation
 - file format migration
 - cost
 - IP issues
No eggs were harmed (yet) in the making of this preservation plan.

geoffrey.harder@ualberta.ca

www.library.ualberta.ca/digitization/preservation
Digital Preservation @ SFU

Mark Jordan
Just getting started

• Starting to think systematically about digital preservation
• Digital preservation and digital curation are in the Library's new 5-year plan
• We’re not starting with a platform, we’re trying to start with policy and practice
Library can't do it alone

- IT Services
- SFU Archives
- VP Research
- SFU Library
University needs to think strategically

• Value of institutional history
• Direct $ value of digital content (e.g. Library or other digitization that is not institutional 'records')
• Risk management (e.g. research data management)
• Economies of scale and economies of collaboration
Existing activity

- Bit-level preservation
- Institutional Repository
- Theses Management System
- LOCKSS
- Workflow integration proof of concept
- SFU Archives’ pilot
Emerging collaborations

• Archives’ pilot
 – Goal is to preserve ex-President Stevenson’s email plus some departmental records
 – IT Services and Library are involved

• New IR (Summit)
 – User, not Library focus
 – Agile platform for integrating with preservation infrastructure

• CARL CFI data management proposal
Current areas of interest

• How to handle video
 – popular and big
• How to handle data
 – also popular and big, with interesting use cases
• Preservation metadata
• Digital-only theses
 – And associated content like video and data
Digital Preservation On The East Coast

Memorial University of Newfoundland

Slavko Manojlovich
Associate University Librarian (IT) / Manager, Digital Archives Initiative
Memorial University of Newfoundland
Current Environment [October, 2011]

- Software: ContentDM, EPrints, OJS, [Archivematica]
- OS: Windows, Ubuntu, MAC OS
- Collections: 150
- Content: theses, videos, audio, maps, journals, monographs, newspapers, images, handwritten diaries with transcripts, 3D models, EADs, [research data]
- No. of digital objects: 1.4 million
- Disk storage: 7+ TB
- Preservation: bit-level, system agnostic [BagIt], logical
- Logical Preservation ➔ Media Type Preservation Plan
OAIS Reference Model

OAIS Functional Entities

SIP = Submission Information Package
AIP = Archival Information Package
DIP = Dissemination Information Package

The OAIS Environment from 10,000 ft

http://wiki.esipfed.org/images/o/ob/OAIS_FunctionalEntities.jpg
DROID Inventory of File Types

<table>
<thead>
<tr>
<th>Format Breakdown</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portable Document Format (Version 1.4)</td>
<td>17</td>
</tr>
<tr>
<td>Portable Document Format (Version 1.5)</td>
<td>14</td>
</tr>
<tr>
<td>ZIP Format</td>
<td>8</td>
</tr>
<tr>
<td>Portable Document Format (Version 1.3)</td>
<td>7</td>
</tr>
<tr>
<td>Microsoft Office Open XML (Version 2007)</td>
<td>2</td>
</tr>
<tr>
<td>Portable Document Format (Version 1.6)</td>
<td>2</td>
</tr>
<tr>
<td>Microsoft Powerpoint Presentation (Version 97-2002)</td>
<td>2</td>
</tr>
<tr>
<td>Microsoft Word for Windows Document (Version 97-2003)</td>
<td>1</td>
</tr>
<tr>
<td>Portable Document Format (Version 1.2)</td>
<td>1</td>
</tr>
<tr>
<td>Acrobat PDF/A - Portable Document Format (Version 1)</td>
<td>1</td>
</tr>
<tr>
<td>OLE2 Compound Document Format</td>
<td>1</td>
</tr>
</tbody>
</table>

Last Update: Tue Oct 11 17:47:27 2011
Media Type Preservation Plan

<table>
<thead>
<tr>
<th>Media type</th>
<th>Supported Ingest File Format Extensions</th>
<th>Long-Term Preservation Format(s)</th>
<th>Access Format(s)</th>
<th>Normalization tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>MP3, WMA, WAV</td>
<td>WAVE (LPCM)</td>
<td>MP3 and WMA</td>
<td>Switch Sound File Converter version 4</td>
</tr>
<tr>
<td>Portable Document Format</td>
<td>PDF, PDF/A</td>
<td>PDF/A searchable</td>
<td>PDF/A searchable</td>
<td>PDF/A Manager (PDFTRON)</td>
</tr>
<tr>
<td>Presentation files</td>
<td>PPT</td>
<td>PDF/A searchable Original file with embedded fonts. ODF</td>
<td>PDF/A searchable, original file with embedded fonts</td>
<td>Unoconv/OpenOffice, PowerPoint or Adobe Pro</td>
</tr>
</tbody>
</table>

Preservation Planning

- Monitor designated community
- Monitor technology
- Develop preservation strategies and standards
- Develop packaging designs and migration Plans

Digital Preservation Management: Implementing Short-term Solutions for Long-term Problems
Monitor Technology
Cross-Platform Access Video Format

• 2005: wmv (Windows Media Video) format using Windows Media Player (or other players) for Windows and Flip4MAC Quicktime extension for Macintosh.

• 2005 – 2009: swf (Adobe Flash) format with Adobe flash plug-ins available for Windows and Macintosh browsers becomes the flavour of the day for web delivery of video content.
Monitor Technology
Cross-Platform Access Video Format

- Fast forward to April, 2010: mp4 (H.264) format with players/support for Windows, Macintosh and IPAD.
- IPAD does not support wmv or swf video formats.
- Video conversion history: wmv→swf→mp4 from original DVD vobs.
- DVD vob files are being preserved with a goal of converting them to MXF Motion JPEG 2000 for long-term preservation.
Monitor Technology
Google Drops H.264 in Favour of WebM and Theora Codecs (Jan 11, 2011)

Source
Microsoft's Got H.264's Back, Releases Plug-in for Chrome Users

By Nick Mediati, PCWorld Feb 2, 2011 11:09 PM

Google made waves in the Web geek community last month when it announced that it would be discontinuing support for H.264 video in its Chrome Web browser. While some supported the move, others were concerned that it would hold back HTML5 adoption. But Microsoft has released a plug-in for Google Chrome that will give you H.264 video support even after Google pulls the plug.

The Windows Media Player HTML5 Extension for Chrome, as Microsoft calls it, will work with Chrome on Windows 7, though this means that users of older versions of Windows, or Chrome on Linux or Mac OS X, will still be out of luck, but it's better than nothing.

If you're game, hit up Microsoft's site and download the plug-in.

The HTML5 video format situation is still a mess, and it'll be a while until it's all sorted out. But hopefully the main browser vendors can get together and agree on a single format sooner rather than later.
“That puts Google at odds with Microsoft, which has publicly declared its support for H.264 as the default video codec in IE9. More importantly, it puts Apple between a rock and a hard place. Google still publicly supports Adobe Flash, which offers a supported path for developers to deliver H.264 encoded content in Google’s browser. But Apple’s bitter public feud with Adobe means it has banned Flash from all iOS devices, leaving H.264 as the only supported codec.”

Source
Digital Preservation Strategy
Pilot Program Implementation

Bronwen Sprout, Digital Initiatives Coordinator, UBC Library
With input from Artefactual Systems
and Sarah Romkey, Rare Books and Special Collections Archivist, UBC Library
Project Components

- archivematica install and training
- Gap analysis
- Strategy and systems architecture
- Findings will be openly accessible when complete
Comprehensive and flexible

- Rare Books and Special Collections
- University Archives
- cIRcle digital repository (DSpace)
- Digitization projects (CONTENTdm)
- Website archiving
- Data preservation
Rare Books and Special Collections

- Ingesting born digital records into archivematica
- DIPs uploaded into ICA-AtoM

thanks to Artefactual for all diagrams
External media station workflow
RBSC findings

• Technical problems
 – File failures

• Intellectual issues
 – Appraisal
 – Accessibility
 – Arrangement
cIRcle

- Receive SIPs from DSpace
• Integrate DIPs from Archivematica
Some of the next steps

- Complete pilot projects – DSpace and CONTENTdm
- Undertake migration projects
- Website archiving - using Heritrix and Wayback Machine
- Research data
- LOCKSS PLN – how does it fit?
- TDR certification prep